Alteration of the midpoint potential and catalytic activity of the rieske iron-sulfur protein by changes of amino acids forming hydrogen bonds to the iron-sulfur cluster.

نویسندگان

  • E Denke
  • T Merbitz-Zahradnik
  • O M Hatzfeld
  • C H Snyder
  • T A Link
  • B L Trumpower
چکیده

The crystal structure of the bovine Rieske iron-sulfur protein indicates a sulfur atom (S-1) of the iron-sulfur cluster and the sulfur atom (Sgamma) of a cysteine residue that coordinates one of the iron atoms form hydrogen bonds with the hydroxyl groups of Ser-163 and Tyr-165, respectively. We have altered the equivalent Ser-183 and Tyr-185 in the Saccharomyces cerevisiae Rieske iron-sulfur protein by site-directed mutagenesis of the iron-sulfur protein gene to examine how these hydrogen bonds affect the midpoint potential of the iron-sulfur cluster and how changes in the midpoint potential affect the activity of the enzyme. Eliminating the hydrogen bond from the hydroxyl group of Ser-183 to S-1 of the cluster lowers the midpoint potential of the cluster by 130 mV, and eliminating the hydrogen bond from the hydroxyl group of Tyr-185 to Sgamma of Cys-159 lowers the midpoint potential by 65 mV. Eliminating both hydrogen bonds has an approximately additive effect, lowering the midpoint potential by 180 mV. Thus, these hydrogen bonds contribute significantly to the positive midpoint potential of the cluster but are not essential for its assembly. The activity of the bc1 complex decreases with the decrease in midpoint potential, confirming that oxidation of ubiquinol by the iron-sulfur protein is the rate-limiting partial reaction in the bc1 complex, and that the rate of this reaction is extensively influenced by the midpoint potential of the iron-sulfur cluster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic resolution structures of rieske iron-sulfur protein: role of hydrogen bonds in tuning the redox potential of iron-sulfur clusters.

The Rieske [2Fe-2S] iron-sulfur protein of cytochrome bc(1) functions as the initial electron acceptor in the rate-limiting step of the catalytic reaction. Prior studies have established roles for a number of conserved residues that hydrogen bond to ligands of the [2Fe-2S] cluster. We have constructed site-specific variants at two of these residues, measured their thermodynamic and functional p...

متن کامل

Role of the Rieske iron-sulfur protein midpoint potential in the protonmotive Q-cycle mechanism of the cytochrome bc1 complex.

The midpoint potential of the [2Fe-2S] cluster of the Rieske iron-sulfur protein (Em7 = +280 mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochrome c catalyzed by the cytochrome bc1 complex. As the midpoint potential of the Rieske cluster is lowered by altering the electronic environment surrounding the cluster, the ubiquinol-cytochrome c reductase activity...

متن کامل

Elimination of the disulfide bridge in the Rieske iron-sulfur protein allows assembly of the [2Fe-2S] cluster into the Rieske protein but damages the ubiquinol oxidation site in the cytochrome bc1 complex.

The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic p...

متن کامل

Failure to insert the iron-sulfur cluster into the Rieske iron-sulfur protein impairs both center N and center P of the cytochrome bc1 complex.

Mutation of a serine that forms a hydrogen bond to the iron-sulfur cluster of the Rieske iron-sulfur protein to a cysteine results in a respiratory-deficient yeast strain due to formation of iron-sulfur protein lacking the iron-sulfur cluster. The Rieske apoprotein lacking the iron-sulfur cluster is inserted into both monomers of the dimeric cytochrome bc(1) complex and processed to mature size...

متن کامل

Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field

Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron-sulfur Rieske cluster. Simulation results provide information on the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 15  شماره 

صفحات  -

تاریخ انتشار 1998